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Abstract

Purpose – An original finite element scheme for advection-diffusion-reaction problems is presented.
The new method, called spotted Petrov-Galerkin (SPG), is a quadratic Petrov-Galerkin (PG)
formulation developed for the solution of equations where either reaction (associated to zero-order
derivatives of the unknown) and/or advection (proportional to first-order derivatives) dominates on
diffusion (associated to second-order derivatives). The addressed issues are turbulence and
advective-reactive features in modelling turbomachinery flows.

Design/methodology/approach – The present work addresses the definition of a new PG
stabilization scheme for the reactive flow limit, formulated on a quadratic finite element space of
approximation. We advocate the use of a higher order stabilized formulation that guarantees the best
compromise between solution stability and accuracy. The formulation is first presented for linear
scalar one-dimensional advective-diffusive-reactive problems and then extended to quadrangular Q2
elements.

Findings – The proposed advective-diffusive-reactive PG formulation improves the solution
accuracy with respect to a standard streamline driven stabilization schemes, e.g. the streamline
upwind or Galerkin, in that it properly accounts for the boundary layer region flow phenomena in
presence of non-equilibrium effects.

Research limitations/implications – The numerical method here proposed has been designed for
second-order quadrangular finite-elements. In particular, the Reynolds-Averaged Navier-Stokes
equations with a non-linear turbulence closure have been modelled using the stable mixed element pair
Q2-Q1.

Originality/value – This paper investigated the predicting capabilities of a finite element method
stabilized formulation developed for the purpose of solving advection-reaction-diffusion problems.
The new method, called SPG, demonstrates its suitability in solving the typical equations of
turbulence eddy viscosity models.
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Paper type Research paper

Introduction
In this work, we focus on the numerical solution of advection-diffusion-reaction
problems using the finite element method (FEM) on quadratic spaces of approximation.
Here, diffusion, advection and reaction refer to those terms in the partial differential
equations (PDEs) involving second-, first- and zero-order derivatives of the unknown.
This family of equations, that governs several phenomena of industrial interest, is
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considered here because of its importance in the turbulence modelling for
turbomachinery computational fluid dynamics (CFD). Concerning the solution of
PDEs for incompressible flows, the use of standard schemes, such as central finite
differences or Galerkin finite elements, features several sources of oscillations. Since
the appearance in the early 1980s of the first works by Hughes and Brooks (1982a, b),
the main recognised shortcoming of symmetric numerical schemes was the lack of
stability in presence of particular flow conditions, such as advection dominated flows
or sharp boundary layers. In the finite element framework, stabilized formulations
have been proposed during the last two decades as remedial strategies. The
Petrov-Galerkin (PG) approach has been widely used to build-up consistent
residual-based stabilization devices. To mention but a few, in the advective limit the
test functions are sensitised by asymmetric streamwise perturbations (e.g. streamline
upwind or Galerkin (SUPG) schemes in Hughes and Brooks, 1982a, b; Tezduyar et al.,
1992; Codina et al., 1992), or in the diffusive limit the Babuska-Brezzi condition is
circumvented making the perturbation proportional to the momentum residual
(e.g. PSPG scheme in Tezduyar et al., 1992). A different approach effective in
controlling advection induced wiggles makes use of the concept of residual free
bubbles (Brezzi et al., 1998).

Moving towards turbomachinery CFD, an additional origin of numerical
deficiencies stems from the reaction or zero-order derivative terms. These terms are
usually related to the rotation of turbomachinery frame of reference (e.g. in the
modelling of Coriolis forces), but they also appear in the turbulence closure equations
(e.g. two equations eddy viscosity models). In this ambit, they are related to dissipation
terms and play a critical role in the development of boundary layers in the case of
vanishing advection effects, such as in the transitional region, or in the stagnation and
separation flow cores. Whenever the reaction is present, local oscillations, near
boundaries or solution discontinuities, may be originated but they typically do not
degrade the global solution accuracy (Codina, 2001). As a matter of fact, in this case it
is not possible to obtain a global stability estimate in the H 1 norm, though it could be
evaluated in L 2, thus explaining the local scale of the oscillations.

To the best of the authors’ knowledge, most of the formulations proposed for
advective-diffusive-reactive flow problems have been designed for linear equations
and linear elements, such as the (SU þ C)PG by Idelsohn et al. (1996) or the GGLS by
Harari and Hughes (1994). Only few works concern with reactive problems pertinent to
turbomachinery fluid dynamics (Codina and Soto, 1997).

In this viewpoint, the present work addresses the definition of a new PG
stabilization scheme for the reactive flow limit, formulated on a quadratic finite
element space of approximation. We advocate the use of a higher order stabilized
formulation (despite of its coding complexity, due to non-negligible second-order
derivatives) that guarantees the best compromise between solution stability and
accuracy (Borello et al., 2003). The proposed method, called spotted Petrov-Galerkin
(SPG), possesses some distinctive features. For advection-diffusion problems it
behaves like a SUPG method, whereas in the reactive-diffusive limit it turns to a space
invariant perturbation able to give rise to spot-like weight functions, symmetric and
concentrated around each nodal position. In intermediate situations, the scheme
combines the advective and reactive perturbation integrals using nodal tuning or
upwind coefficients that depend on element Peclet and reaction numbers and are
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designed to circumvent any compounding effect. The multi-dimensional variant of the
SPG method has been used on linear PDEs and on the Reynolds Averaged
Navier-Stokes (RANS) equations in combination with two equations k-1 models, both
standard (Launder and Sharma, 1974) and non-linear variants (Craft et al., 1996).

The remainder of the paper is organised as follows. First, the Galerkin formulation
of the general advective-diffusive-reactive problem is presented. In order to show the
instability origin for reaction-dominated problems, we then consider a one-dimensional
(1D) problem in the null advection limit, addressing the need for a stabilized numerical
scheme. Then the SPG formulation is presented for the linear scalar 1D
advective-diffusive-reactive equation. The extension of the formulation to the
multi-dimensional case is discussed, and the family of weights for quadrangular Q2
element is shown. Then the whole stabilized SPG formulation for the RANS approach
to incompressible turbulent flows is presented, commenting on the reactivity features
arising in the closure equations of turbulence EVMs. Finally, the performance of SPG
are assessed against solutions provided by SUPG, both for model problems and for real
turbulent flow configurations.

Finite element scalar advective-diffusive-reactive problem; reaction
induced instabilities
Let us take the general linear scalar advective-reactive-diffusive problem statement on
the closed domain V for the unknown U:

FaðU Þ;j þFdðU ;7U Þ;j þFrðU Þ ¼ f in V [ Rnsd ð1:1Þ

U ðGDÞ ¼ UD

U ;nðGN Þ ¼ uN

where nsd is the number of space dimensions and the structure of the operators
reads as:

FaðU Þ ¼ ujU

FdðU ;7U Þ ¼ 2kU ;j

FrðU Þ ¼ cU

ð1:2Þ

and uj are the solenoidal velocity components, k . 0 is the constant diffusivity, c $ 0 is
the reaction coefficient and f the source term. The boundary conditions are specified
along the surface boundary G ¼ GN < GD ðGN and GD are closed, disjoint subsets of G),
including Dirichlet (UD) and Neumann conditions (uN).

Given a finite element partition of the original closed domain V into elements Ve,
e ¼ 1, nel (nel, number of elements), such that:

<eVe ¼ V and >e Ve ¼ B ð2:1Þ

with the interior boundaries:

Gint ¼ <eGe 2 G ð2:2Þ

Let define the finite dimensional spaces of trial and weight functions as:
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S h ¼ U hjU h [ H 1hðVÞ;U h ¼ UD on GD;UD [ H ð1=2ÞhðGDÞ
n o

ð3:1Þ

W h ¼ whjwh [ H 1h
0 ;wh ¼ 0 on GD

n o
ð3:2Þ

where H 1hðVÞ and H 1h
0 ðVÞ are the Sobolev spaces for the continuous pair of finite

element functions, H ð1=2ÞhðGDÞ is their restriction to the domain boundary, and the
superscript h denotes the characteristic length scale of the domain discretization.
The Galerkin weak formulation of problem (1.1) and (1.2) reads as follows:

Xnel

e¼1
Ve

Z
whFh

a;j dV2
Xnel

e¼1
Ve

Z
wh
;jF

h
d dV

þ
Xnel

e¼1
Ve

Z
whFh

r dV ¼
Xnel

e¼1
Ve

Z
whf dVþ

GN

Z
whk

›U h

›n
dG

ð4Þ

The solution obtained with equation (4) for advection dominated problems is affected
by spurious oscillations, that could be tackled with stabilized formulations such as
SUPG. Also reaction terms give rise to oscillations that must be controlled by means of
stabilized formulations enriched with built-in components to preclude oscillatory
behaviour in the reaction-dominated limit. In this viewpoint, let us consider the
ordinary differential equation obtained from equations (1.1) and (1.2), for nsd ¼ 1; and
source term f ¼ 0 :

u
dU

dx
2 k

d2U

dx 2
þ cU ¼ 0 ð5Þ

The discretization of equation (5), for constant physical properties, using the Galerkin
method on a quadratic space of interpolation, with uniform element of length h, gives
rise to the following difference equations:

Ui21½24 2 2Pe þ r=10� þ Ui½8 þ r4=5� þ Uiþ1½24 þ 2Pe þ r=10� ¼ 0 ð6Þ

for (i ) element central node, and

Ui22½1 þ Pe 2 r=10� þ Ui21½28 2 4Pe þ r=5� þ Ui½14 þ r4=5�

þ Uiþ1½28 þ 4Pe þ r=5� þ Uiþ2½1 2 Pe 2 r=10� ¼ 0
ð7Þ

for ði 2 2; i; i þ 2Þ element extreme nodes.
In the above equations, the magnitudes of advection or reaction versus diffusion are

given by the element Peclet number Pe ¼ kukh=2k; and the element reaction number
r ¼ ch 2=k; respectively.

In order to have a first insight on the instability origin of the reaction dominated
case, let now consider the null advection limit of the studied problem, focusing, for
instance, on element central nodes. In this case, equation (6) turns to the following
expression:
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Ui21½24 þ r=10� þ Ui½8 þ r4=5� þ Uiþ1½24 þ r=10� ¼ 0 ð8Þ

The solutions of the characteristic equation associated to equation (8), the so-called
Galerkin nodal amplification factors (Harari and Hughes, 1994), purely depend on the
magnitude of reaction:

r ¼
2 8 þ 4

5 r
� �

^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 þ 4

5 r
� �2

24 24 þ r
10

� �2
q
2 24 þ r

10

� � ð9Þ

The influence exerted on r shows that the exact solution exponential behaviour is
preserved only with r , 40: This circumstance confirms the need of designing a
stabilized scheme with built-in component to preclude oscillatory behaviour in reaction
dominated cases.

SPG formulation
The stabilized SPG formulation is obtained by imposing nodal exactness to the
numerical solution of problem (5). Provided that different equations have been obtained
for the extreme and central nodes (Codina et al., 1992), it is possible to find two optimal
modified weights, on the basis of the discrete equations (6) and (7) separately. Each of
these resulting PG weight functions is obtained from the addition to the Galerkin one
wi (for the sake of simplicity, from now on the superscript h that denotes the finite
dimensional spaces of weight and trial functions will be omitted) of two perturbation
functions, the first one to control advection induced oscillations and the second for
reaction induced ones (as first suggested for linear elements by Idelsohn et al., 1996),
and for each element node (i ) read as:

~wi ¼ wi þ zai
Pai

þ zri
Pri

ð10Þ

where zai
and zri

; the tuning coefficients for the two perturbation functions,
respectively, Pai

for advection induced instabilities and Pri
for reaction induced ones.

The first perturbation is formally similar to a SUPG one and reads as:

Pai
¼

h

2kuk
ukwi;k ð11Þ

On the other hand, the design of the perturbation function that controls reaction effects
is based on the following constraints. First, in the null advection case the invariance of
the equation under coordinate inversion suggests to adopt symmetric weight ~wi

(Idelsohn et al., 1996). Moreover, in the pure reaction limit (r ! 1), the optimal weight
would be a Dirac’s delta. On this basis, the perturbation suggested by the authors is a
symmetric and negative definite polynomial (Idelsohn et al., 1996), and must fulfil at
least six constraints, i.e. it must be zero with zero first-order derivative on the element
nodes. The lowest order polynomial with these features is a sixth-order one; the
seventh constraint imposed by the authors is represented by the CSPG value which sets
the magnitude of the weight reduction between two neighbouring nodes:

Pri
¼ Pr ¼ 2

CSPG

l6j
j 6 2

l2j
2
j 4 þ

l4j
16

j 2

" #
ð12Þ
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where j represents the coordinate in the master or logic space and lj its dimension
(in our case equal to 2). It is remarkable that the periodic-like behaviour of this function
permits to use the same analytical expression for each node. The coefficient CSPG is
used to set the asymptotic values of the tuning functions zri

; without affecting zai
:

The expression for the tuning functions are consequent to the super-convergence
condition (Codina et al., 1992; Idelsohn et al., 1996) that requires the identity between
the discrete and the exact solution in case of a homogeneous linear 1D problem.
In particular, the use of the SPG method to solve equation (5) on a quadratic space of
interpolation, with uniform elements of length h, gives rise to the following difference
equations:

2a6 · Ui21 þ d8 · Ui 2 a7 · Uiþ1 ¼ 0 ð13:1Þ

for (i ) element central node, and

Ui22½a2 þ b2za1
þ e2zr1

� þ Ui21½a1 þ b1za1
þ e1zr1

� þ Ui½a4 þ b4za1
þ e4zr1

�

þ Uiþ1½a3 þ b3za1
þ e34:55zr1

� þ Uiþ2½a5 þ b5za1
þ e5zr1

� ¼ 0
ð13:2Þ

for ði 2 2; i; i þ 2Þ element extreme nodes. It should be remarked that in equation (13.1)
the coefficients are linear function of the unknowns, namely za2

; zr2
; and equation (13.2)

provides za1
¼ za3

; zr1
¼ zr3

: Equations (13.1) and (13.2) are written in a synthetic way,
and the complete expressions of the coefficients are given in Appendix 1.

The substitution of the analytical solution into equations (13.1) and (13.2), permits to
obtain first za2

, zr2
and as a consequence za1

, zr1
. For the sake of completeness the

analytical expressions of the tuning functions are summarized in Appendix 2.
Figure 1 shows the perturbed weight function ~wi; for 1D quadratic elements in case

of null advection with varying tuning coefficients zri
; both for central and extreme

nodes. The weights are plotted for CSPG ¼ ð212=32Þ £ 0:35: This value stems from
the fulfilment of seven constraints for the Pr perturbation on quadratic elements,
including: null nodal values and derivatives, Pr intensity at j ¼ ^lj=4:

Figure 2(a) shows the behaviours of zai
for different combinations of Pe and r.

Furthermore, Figure 2(b) shows that of zri
tuning functions.

It is remarkable that the sensitivity to the reactive part of the differential operator
gives rise to the tuning functions zri

and the behaviour of the formulation in the
null-reaction limit approaches the SUPG Q2 one proposed by Codina et al. (1992).

Extension of SPG formulation to multi-dimensional case
The two-dimensional (2D) extension of the Pr function is designed to preserve its 1D
requirement, that is the isotropic concentration of the perturbed weight around the
nodal positions. To this end, we designed a Cartesian product between the 1D
counterparts of the second perturbation function, where the Pr spots are moved in the
element portion closer to the corresponding nodes. This concept is depicted in Figure 3
that shows the resulting geometries for the 2D second perturbation functions on logic
space. In such a way, it is possible to maintain the continuity of the Pr on the
inter-element boundary.

It is worth noting that the 2D tuning functions zri
are obtained on the basis of a pure

positional criterion on logic space. For example, in the case of the mid-side node of
Figure 3(c) the tuning function is a linear combination of zr1

and zr2
:
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RANS formulation in presence of reaction
Fluid model formulation
The dynamic response of incompressible turbulent flows is modelled by using a RANS
approach. Each quantity U is then decomposed into its conventional average (denoted
by an overbar) and the fluctuation with respect to the latter (denoted by a prime), as
U ¼ U þ U 0: In the present work, it is used a cubic k-1 model (Craft et al., 1996),
labelled CLS96. The non-isotropic constitutive relation for the Reynolds stresses ru0

iu
�0
j

is in the form of a third-order polynomial of the mean strain and vorticity tensors, and
scalar turbulent viscosity nt:

Figure 1.
1D null advection:
(a) resulting weight for
extreme node; and (b) for
central node
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u0
iu

0
j ¼

2

3
kdij 2ntSij þ20:1nt

k

1
SikSkj 2SklSkl

1

3
dij

� �
þ0:1nt

k

1
ðWikSkj þWjkSkiÞ

þ0:26nt
k

1
WikWkj 2WklWkl

1

3
dij

� �
210c3

mnt
k

1

� �2

ðSkiW lj þSkjWliÞSkl

25c3
mnt

k

1

� �2

SijSklSkl þ5c3
mnt

k

1

� �2

SijWklWkl

ð14Þ

where Sij ¼ ð�ui;j þ �uj;iÞ is twice the strain tensor, Wij ¼ ð�ui;j 2 �uj;iÞ is twice the
vorticity tensor, and dij is the Kronecker tensor. The turbulent viscosity is defined as:

nt ¼ cmf m
k 2

1
ð15:1Þ

with

Figure 2.
SPG tuning functions

Quadratic
Petrov-Galerkin

finite elements

901



cm ¼
0:3½1 2 exp½20:36=exp½20:75 maxðS;W Þ���

1 þ 0:35½maxðS;W Þ�1:5
ð15:2Þ

f m ¼ 1 2 exp 2
Ret

90

� �0:5

2
Ret

400

� �2
" #

ð15:3Þ

where Ret ¼ k 2=n1 is the turbulence Reynolds number, S and W are, respectively, the
strain and vorticity invariants defined as:

S ¼
k

1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
SijSij

r
W ¼

k

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
WijWij

r
ð15:4Þ

As shown by the validation studies presented by Chen and Leschziner (1999) and
Corsini and Rispoli (2002), the stress-strain cubic dependence is a mean to establish an
appropriate sensitivity to streamline curvature. The non-isotropic model is coupled
with a two-equations closure, where the turbulent velocity- and length-scales are
determined by solving steady-state conservation equations for the turbulent kinetic
energy and the isotropic turbulent dissipation.

Problem statement
The complete RANS formulation is obtained in terms of: the momentum components
r�uiði ¼ 1; 2; 3Þ (where r is the density, and �ui the Cartesian averaged velocity
components), the static pressure p; the turbulent kinetic energy k, and the dissipation
variable ~1 ¼ 12 2nð›

ffiffiffi
k

p
=›xiÞ

2; that replaces the isotropic dissipation rate 1.

Figure 3.
2D Pr functions in the logic
space
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The boundary value problem reads as:

Fað ~UÞ;j þ Fdð ~U;7 ~UÞ;j 2 rf ¼ 0 in V [ Rnsd

U ¼ U D on GD

Fd;n ¼ uN on GN

ð16Þ

where U is the vector of the averaged unknowns related to ~U by:

U ;
�
�u1; �u2; �u3; �p; k; ~1

�T
¼ ~Uþ

�
0; 0; 0; �p 2 1; 0; 0

�T
ð17Þ

which could be interpreted in terms of the primary-turbulent flow properties

U p ; ½ �u1; �u2; �u3; 0; k; ~1 �T

and of the constrained variables

U c ; ½ 0; 0; 0; �p; 0; 0 �T:

The boundary conditions, specified along the computational domain boundary,
generally include inflow Dirichlet conditions (U D) and outflow Neumann
conditions (uN). On solid boundaries, homogeneous Dirichlet conditions are imposed
for U p:

The flux vectors appearing in equation (16) are defined as:

Fað ~UÞ ¼ ½�ujr�u1; �ujr�u2; �ujr�u3; �uj; �ujrk; �ujr ~1�
T ð18:1Þ

Fdð ~U;7 ~UÞ ¼ �s1j; �s2j; �s3j; 0;2r nþ
nt

sk

� �
k;j ;2r nþ

nt

s1

� �
~1;j

� 	T

ð18:2Þ

where the stress tensor is:

�sij ¼ �p*dij 2 rðnþ ntÞð�ui;j þ �uj;iÞ ð18:3Þ

The non-linear Newtonian like turbulent stress terms are thus included, adding nt

to the molecular kinematic viscosity, whereas the modified pressure ð�p* Þ
includes the isotropic part of the turbulent stress tensor. Finally, the source vector is
defined as:

f ;2 PM1; PM2; PM3; 0; 2Pk þ ~1þD; 2c11Pk ~1=kþ c12 f 12 ~1
2=k2E

h iT

ð18:4Þ

Concerning the momentum source components PMi; they account for volume sources
originating from square and cubic terms in the assumed constitutive relation of
equation (14). The EVM closure coefficients are recalled in Table I.

The loosely explicit coupling between the turbulence scale determining
equations is strengthened by means of the following decomposition of the
source vector f:

2rf ¼ 2r~f þ Frð ~UÞ ð19:1Þ
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where

~f ; 2 PM1; PM2; PM3; 0; 2Pk þ D; 2c11Pk ~1=k 2 E
h iT

Frð ~UÞ ¼
�

0; 0; 0; 0; ckk; c1 ~1
�T

ð19:2Þ

with,

ck ¼
~1

k
c1 ¼ c12f 12

~1

k
ð19:3Þ

By that way the dissipation-destruction budget components in Frð ~UÞ could be
interpreted as reactive terms which are able to establish a direct non-linear
coupling. The problem statement (16) could now be rewritten in an
advective-diffusive-reactive fashion:

Fað ~U Þ;j þ Fdð ~U;7 ~U Þ;j þ Frð ~U Þ2 r~f ¼ 0 in V [ Rnsd

U ¼ U D on GD

Fd;n ¼ uN on GN

ð20Þ

It is thus possible to calculate the reaction numbers for the k-1 equations, that
read as:

rk ¼
ckh

2

nþ nt

sk

ð21:1Þ

r1 ¼
c1h

2

nþ nt

s1

ð21:2Þ

It is remarkable that the magnitudes of the reaction-to-advection ratios (rk/Pek,
r1/Pe1) become relevant in the near-wall region, mainly within the viscous and
buffer sub-layers. Moreover, reaction-driven effects are emphasized in presence of
non-equilibrium phenomena such as stagnation region, transition or separation. To
this end, it is possible to express the relative magnitude of reaction with respect to
advection in terms of time scale ratio:

rk

Pek

,
r1

Pe1
,

1

k

h

k�uk
,

T

t
ð22Þ

sk 1
s1 1.3
C11 1.44
c12 1.92

f 12 1 2 0:3 exp 2Re2
t


 �h i
Pk u0

iu
�0
k
�ui;k

D 2n ð›
ffiffiffi
k

p
=›xiÞ

2

E 0:0022Sktntð›
2 �ui=›xj›xkÞ

2

t k=1

Table I.
EVM CLS96 coefficients
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where T ¼ h=k�uk is the element mean time scale and t ¼ k=1 is the modelled
turbulence time scale. For instance, in case of a fully developed plane channel flow
it is easy to show that approaching the wall T=t behaves as:

T

t
,

1

d2
ð23Þ

where d is the distance from the solid wall.

SPG variational formulation for RANS equations
Let us define, by using the notation introduced in equations (3.1) and (3.2), the
finite dimensional spaces of trial and test functions for primary and constrained
variables as:

Sh
p ¼ {UpjUp [ H 1hðVÞ; Up ¼ wD on GD; wD [ H ð1=2ÞhðGDÞ}

V h
p ¼ wpjwp [ H 1h

0 ðVÞ; wp ¼ 0 on GD

n o

Sh
c ¼ V h

c ¼ UcjUc [ H 1h
0 ðVÞ; wcjwc [ H 1h

0 ðVÞ
n o

ð24Þ

The associated SPG weight functions could be written in vector form as:

~w ; w þ p

w ¼ ½wp; wp; wp; wc; wp; wp �T; p¼ ½pp; pp; pp; pc; pp; pp �T; ð25Þ

where the Galerkin test functions are modified by the perturbation p. The perturbation
for the primary-turbulent variables pp is based on the operator already introduced in
equation (10) for the scalar problem. In addition PSPG stabilization is used, also for
mixed order Q2-Q1 elements, making the convergence faster by means of zero diagonal
entries elimination (Borello et al., 2003). The resulting perturbation of the continuity
equation, which is made proportional to the momentum residual, makes use of a
function pc that reads as:

pc ¼
h

2kUk
zwc;j ð26Þ

where U is the global scaling velocity, and the dependence on the element Peclet
number is exploited through the z magic function proposed by Tezduyar et al. (1992).

The residual SPG formulation of the differential problem (18.1)-(18.4) now reads as
follows: find U [ H 1h ;wp [ V h

p; ;wc [ V h
c ; such that:

cð�u;U ;wÞ þ sðU ;wÞ þ rðU ;wÞ þPðpÞ ¼ ðr~f;whÞ þ ðwN ;wGN
ÞGN

ð27Þ

with use of bi-linear and tri-linear forms:
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sðU ;wÞ ¼ 2

V

Z
w;jFd dV

ðr~f;wÞ ¼

V

Z
wr~f dV

ðwN ;wjGN
ÞGN

¼

G

Z
wGN

wN dG

cð�u; U ;wÞ ¼

V

Z
Fa;jw dV

rðU ;wÞ ¼

V

Z
wFr dV

ð28Þ

Finally, the stabilization integrals are defined as:

PðppÞ ¼
Xnel

e¼1
Ve

Z
ðFa;j þ Fd;j þ Fr 2 r~f Þpp dV

PðpcÞ ¼
Xnel

e¼1
Ve

Z
ðFa;j þ Fd;j þ Fr 2 r~f ÞðM Þpc dV

ð29Þ

where the superscript (M) refers to the momentum residual, and the stabilizing
contributions are confined on the element interior according to the continuity
properties of the lower order perturbation function.

Numerical examples
In this section, we assess the numerical performance of the proposed SPG formulation
for model problems as well as flow configurations pertinent to turbomachinery fluid
dynamics. In these validation studies, the improvement of the SPG are commented
with respect to the classical stabilization schemes, such as the SUPG or streamline
upwind. It is remarkable that, since all of the consistent methods usually share
the optimal property in 1D, the proposed test cases violate at least one of the
super-convergence conditions (i.e. non-uniform mesh, multi-dimensional domain,
non-linear equations and non-homogeneous source terms).

Advection-diffusion-reaction 2D model problem
The first test cases (labelled TC1 and TC2) concern the numerical solution of the linear
scalar advective-diffusive-reactive model problem (1.1) and (1.2), in a unit square
domain. The mesh is uniform with 10 £ 10 quadratic elements, thus consisting of
441 nodes. The complete problem statements are shown in Figure 4, for both
TC1 and TC2. The known velocity field u is assumed to have a parabolic profile
(e.g. uðx; yÞ ¼ 2y 2 y 2; vðx; yÞ ¼ 0Þ; with maximum value equal to one. The coefficients
are: k ¼ 1025; c ¼ 5 £ 102; and the related maxima for dimensionless numbers are:
Pe ¼ oð103Þ and r ¼ oð105Þ; obtained with a pure geometrical element characteristic
length h.
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For both test cases the SPG solutions are compared to quadratic Galerkin (G Q2),
streamline upwind (SU Q2) and SUPG Q2 ones. First, in Figure 5 numerical solutions
for TC1 are compared. As it clearly appears, the SU Q2 is unable to the improve
Galerkin solution, suffering from the combination of its inconsistency and its inability

Figure 4.
Scalar advective-

diffusive-reactive problem
statement: TC1, f ¼ 0;

TC2, f maxð y ¼ 0:1Þ ¼ 50

Figure 5.
TC1 comparison of

solution
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to control reactive effects. With respect to the PG schemes, both feature stable fields,
being able of controlling completely the instability origins in the near- and far-wall
regions.

Figure 6 shows the U streamwise profiles predicted by G Q2, SUPG Q2 and SPG
schemes at y ¼ 0:05 and y ¼ 0:1; close to the null advection boundary line, with a list
of the last nodal values. The PG-like solutions are both able of predicting smooth U
profiles, improving the G Q2 and SU Q2 oscillatory behaviour. Nonetheless, the SUPG
Q2 returns an over-diffused layer close to the Dirichlet conditions, thus confirming its
inability to control the reactive effects, with respect to SPG solution that returns a
sharp but continuous solution layer.

As far as the TC2 case with non-uniform source f is concerned, in Figure 7 the
solutions are compared.

Figure 6.
TC1 comparison of
streamwise U profiles:
(a) at y ¼ 0:05; and (b) at
y ¼ 0:1
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It is worth noting that the source integral has been approximated linearly, according to
the Q2 element optimal conditions (Codina et al., 1992). Even in this case the SU Q2
solution suffers from the same oscillations arising in the Galerkin one. In Figure 8 are
compared the U streamwise profiles predicted by G Q2, SUPG Q2 and SPG schemes at
y ¼ 0:05 and y ¼ 0:1: In this flow region the reactive effects are combined with a steep
gradient of the source term.

The comparison between the shown nodal values confirms that the SPG is able to
recover a non-oscillatory solution, also where the sharp streamwise solution layer
develops under the effect of a non-uniform source. In addition to the higher diffusivity
of the SUPG solution, Figure 7(c) shows some numerical pathologies due to the
presence of the relevant source term.

Turbulent flow on a semi-circular leading edge
The second test case concerns the prediction of the boundary layer development on a
flat plate with a semi-circular leading edge. The leading-edge configuration, labelled
T3L, was proposed in 1991 by the ERCOFTAC Special Interest Group on Transition. In

Figure 7.
TC2 comparison
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particular, the present study refers to the experiments carried out by Palikaras et al.
(2002) for the zero pressure gradient configuration. The Reynolds number, based on the
inlet velocity and the leading-edge radius ðlr ¼ 5 mmÞ; is equal to 1,660. The flow is
assumed 2D with constant temperature and incompressible, with an experimental inlet
free-stream turbulence intensity (TI) set to 7 per cent, and a dissipation length l1 of
18 mm.

The computational domain, that extends 15 lr upstream the leading edge and 60 lr
downstream of it, has been modelled with a 12,681 nodes block-structured (H-O) grid,
and Q2-Q1 element pair. In the vicinity of the flat plate (i.e. O-connected region) the first
node row has a dimensionless distance from the solid wall dþ ¼ yþ ¼ 1:0: On the inlet
section of the computational domain, the experimental free-stream uniform profile is
used for the velocity ð�u ¼ 5 m=sÞ; and uniform distributions are also used for the

Figure 8.
TC2 comparison of
streamwise U profiles:
(a) at y ¼ 0:05; and (b) at
y ¼ 0:1
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turbulent unknowns (i.e. k and ~1Þ which are computed on the basis of the measured TI
and l1. No-slip conditions are used on the plate wall, and homogeneous Neumann
conditions are imposed on the outlet section.

The numerical campaigns for the SPG scheme assessment were carried out using
the FGMRES(20) solver with convergence thresholds for error Rres and solution Rsol

residuals set to 1026. Uniform initial fields were used for velocity components and
turbulent variables, setting �u; k and ~1; respectively, to the free-stream values and �v ¼ �u
0.01. The stabilization parameters have been computed by means of the streamwise
characteristic element length (Tezduyar et al., 1992), and a quadratic SUPG formulation
(Codina et al., 1992) was used to produce the benchmark solution.

The first analysis takes into account the numerical robustness by comparing, in
Figure 9, the convergence histories in terms of the Rsol and Rres.

The plotted data refer to the use of SPG and SUPG stabilized formulations on RANS
equations with a standard eddy viscosity closure, e.g. the k-1 model proposed by
Launder and Sharma (1974). The shown Rsol and Rres behaviours provide the evidence
that the SPG produces a slight speed-up into the convergence.

The analysis of the SPG formulation when applied to the solution of the flow and
turbulence equations in a fully coupled manner, was then extended to a RANS
closure based on an anisotropic turbulence model, e.g. the cubic k-1 model CLS96.
That is considered as a fair baseline in turbomachinery simulation, as it includes
provisions to account for curvature and non-equilibrium effects, and to attenuate
stagnation-point inconsistency (Corsini and Rispoli, 2002). The assessment of the SPG
features in presence of turbulence-related reactive effects was focused on the T3L
flow regions typically affected by non-equilibrium phenomena. In order to figure out
the magnitude of the resolved advective-reactive values, Figure 10 shows the
contours of the ratio rk/Pek about the leading-edge profile in the case of the SPG

Figure 9.
T3L convergence histories

for PG formulations:
(a) Rsol; and (b) Rres
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solution. The isolines show that the reactivity of the turbulence equations manifests
itself in the vicinity of the stagnation point, and downstream the leading edge
starting from the axial location where the onset of the by-pass laminar-to-turbulence
transition falls. It is worth noting that within the reactivity cores the reaction number
rk has a magnitude comparable to that of the local advection, while moving
downstream its value grows up to o(103).

Moving downstream the leading edge, the assessment of the SPG formulation
against the SUPG one deals with the simulation of the boundary layer development in
terms of streamwise-velocity profiles and integral boundary layer parameterisation
(Figure 11).

In Figure 12, the streamwise-velocity evolution along the flat plate shows no
remarkable differences between the computed profiles, both in fair agreement with the
experimental data. Instead, Figure 12 compares the axial evolution of the integral
properties of the flat plate boundary layer. The following quantities have been plotted
against the available measurements: the displacement d * and momentum u *

thicknesses, and the shape factor H.
Contrarily to the velocity profiles, the axial evolutions of the displacement

thickness, in Figure 12(a), provide the evidence of differences between the PG
formulations under exam. Though the computational data under-predict the measured
one, the SPG d * distribution shows an improved capability of mimicking the velocity
layer thickness evolution up to a fully-turbulent state, featuring higher d* values and
similar axial profile shape. This circumstance is further confirmed by the momentum
thickness distributions, Figure 12(b). Here the SPG is shown to return qualitatively the
variation of the boundary layer momentum content reproducing also the profile
gradient discontinuity at the transition onset (e.g. x ¼ 0:008; x=lr ¼ 1:6). Figure 12(c),
finally, compares the shape factor evolutions. It is remarkable that, though
under-predicting the experiments, the SPG solution is able of recovering a profile
shape similar to the measured one and mainly characterized by the abrupt slope
variation in the transition region where, as shown in Figure 10, r and Pe assume a
comparable magnitude.

Figure 13, moreover, investigates the streamwise evolution of the boundary layer in
terms of the TI profile normal to the wall.

The TI field, explicitly affected by the reactivity of the implemented turbulence
equations, shows that the SPG solution outperforms the SUPG one in predicting the

Figure 10.
Reaction-to-advection
ratio rk=Pek contours
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re-arrangement of the boundary layer. In detail, the u0 profiles at x=lr ¼ 1:2 clearly
show that in the buffer-layer region, where the local reaction number is of o(100), the
SPG is able of reducing the over-prediction of the local turbulence level related to the
well known EVM failure of correctly detecting the by-pass transition.

Figure 11.
Streamwise velocity

profiles
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Figure 12.
Integral boundary layer
parameters:
(a) displacement thickness;
(b) momentum thickness;
and (c) shape factor
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Controlled-diffusion compressor cascade flow
The last test case concerns a 2D compressor cascade with controlled-diffusion (CD)
blade profile, designed by Sanger (1983) and experimentally studied by Elazar
and Shreeve (1990) using two-component LDV system. The blade profile has a

Figure 13.
Streamwise TI profiles
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14.48 stagger angle, a solidity s ¼ 1:67; and a chord length lc ¼ 127:3 mm: Three inlet
flow angles were measured (quasi-design, weak off-design, off-design) and only the
off-design condition with incidence angle b equal to 468 is here considered. In this
condition, the suction side is subjected to a strong adverse pressure gradient, that
promotes a challenging transitional flow, with a boundary layer becoming thicker and
thicker as the trailing edge is approached (Chen et al., 1998). The chord Reynolds
number, based on the inlet flow velocity Uin ( ¼ 85 m/s), is set to 7 £ 105: The flow is
2D with constant temperature, and could be considered virtually incompressible. A H
topology consisting of 40,524 nodes was used to model the flow region, as sketched in
Figure 14. The refinement is such that the highest dimensionless distance for the
nearest node to the wall along the boundary is dþ ¼ 1:5: The numerical campaigns for
the SPG scheme assessment were carried out using the FGMRES(20) solver with
convergence thresholds for error Rres and solution Rsol residuals set to 1026.

At the inlet section of the computational domain uniform profiles are used for the
velocity components and the turbulent quantities. The experimental free-stream
distribution is used for the mean velocity profile. The TI and the characteristic length
scale are TI ¼ 2:3 and l1=lc ¼ 3 per cent. These return the physical turbulence level at
the blade leading edge, located half a chord downstream the inlet plane. Homogeneous
Neumann conditions are used at the outlet section, one chord downstream the trailing
edge, and the flow periodicity is strictly imposed at the permeable boundaries in the
middle of adjacent blade passages.

Figure 15 shows the contours of the ratio rk/Pek in the vicinity of the blade leading
and trailing edges for the SPG solution. As a consequence of the chosen operating
condition, with the flow entering the blade row at the maximum incidence, the isolines
indicate the presence of high reactivity cores approaching the stagnation point and
along the blade suction side with a peak value of o(101).

The experimental static pressure coefficient Cp distribution, shown in Figure 16,
suggests the existence of a substantial uniform adverse pressure gradient governing
the boundary layer evolution on the suction downwind the leading edge. The PG
formulations appear to be, quite generally, in fairly sensitive matching with the
measured pressure distribution, and both approximate the pressure profile flattening
about 15 per cent of the chord that traces the leading-edge separation.

The streamwise-velocity and TI distributions on the blade suction side are plotted,
respectively, in Figures 17 and 18 at three chordwise locations: x=lc ¼ 5:2; 64 and
95 per cent against the non-dimensional distance d/lc.

Figure 14.
Controlled diffusion
cascade, computational
grid
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Both the computed boundary layer developments appear to return the physical issues
shown by the experiments, within the inner and the outer layers. It is important to note
that the presence of an adverse pressure gradient, causing the reactivity to be more
relevant compared to the T3L configuration, gives rise to noticeable differences in the
streamwise-velocity and TI profiles. In detail, the SPG appears to resolve the boundary
layer thickening and the turbulence energy contents in a far better agreement than the
SUPG scheme.

Influence of the SPG formulation on turbulence phenomena prediction
The flat plate and compressor cascade studies discussed above, have provided
evidence that the application of the SPG residual scheme to the RANS equations with
an anisotropic eddy viscosity closure had enabled the turbulence phemonena to be
realistically captured in flow configuration pertinent to turbomachinery. Moreover, the
proposed advective-diffusive-reactive PG formulation improves the solution accuracy

Figure 15.
Reaction-to-advection
ratio rk=Pek contours
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with respect to a standard streamline driven stabilization schemes, e.g. the SUPG, in
that it properly accounts for the boundary layer region flow phenomena in presence of
non-equilibrium effects. With the aim of contributing to understand the influence of the
SPG residual scheme we focus on those issues shown by the simulation of boundary
layer in presence of zero and strong adverse pressure gradient, and in the leading-edge
stagnation region.

Figure 16.
Cp distributions

Figure 17.
Streamwise velocity
profiles
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As far as the boundary layer simulations are concerned, the SPG solution outperforms
the purely advective scheme resolving adequately the axial and chord-wise evolution
of the velocity layer thickness (Figures 11 and 17) as well as the turbulent energy
contents (Figures 13 and 18). In this respect the insufficient cross-wise turbulent
mixing shown by the SUPG solutions, that typically affects the non-linear EVM owing
to the cubic stress-strain relationship (Chen et al., 1998; Corsini and Rispoli, 2002),
appears to be attenuated. This feature origins from the dependence of the residual
distributor mechanism from the reaction magnitude, through the numbers rk and r1:
The weight additive structure proposed in equation (10) is able to correct, on an
element scale, the spatial shape of the projection operator balancing the purely
anisotropic streamwise deformation with an elliptic diffusive-reactive effect.

To demonstrate this concept, with reference to the T3L configuration, Figure 19
shows the profiles normal to the wall of the turbulent viscosity nt (Figure 13(c)) at two
axial locations, x=lr ¼ 1:2 and 2.4.

Figure 19 clearly shows that the SPG affects the cross-wise nt distribution by
reducing it within the low reactivity core before the transition completion (Figure 19(a)),
and by increasing it downstream where the reactivity grows (Figure 19(b)), producing
an enhanced turbulence transport by diffusive dominated mechanisms. Furthermore,
Figure 20 shows the crosswise profiles of the turbulent diffusive component
Dt ¼ nt›

2k=›y 2 of the k equation budget at x=lr ¼ 1:2 and 2.4. Data in Figure 20
are normalized with respect to the local friction velocity ut and the molecular
viscosity n.

The analysis of Dt behaviours gives an additional a-posteriori confirmation
of the SPG ability to adapt the shape of the residual projector resolving adequately
the crosswise diffusion enhancement correlated to the boundary layer transition to the
fully turbulent state (e.g. about yþ ¼ 25 the Dt enhances according to a ratio 1:8 in
the SPG simulation).

Figure 18.
Streamwise TI profiles
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Finally, to give more hints about the influence of the SPG scheme in the vicinity
of the stagnation point region, the behaviour of the turbulence time scale t ¼ k=1
is discussed owing to its influence on the production of 1 that is recognized to
cause spuriously high turbulent kinetic energy level (Durbin, 1996). Figure 21
compares the profiles of the computed turbulence time scale t(x) along a
stagnation line from the axial position x=lr ¼ 20:3: As shown in Figure 21,
independently from the PG formulation, the use of an anisotropic EVM is able to
control the over-prediction of t eliminating the anomalously large turbulent kinetic
energy growth (e.g. so-called stagnation point anomaly) without introducing
scale-limiter in the form of realizability constraint (Corsini and Rispoli, 2002). It is,
moreover, evident that the SPG profile features a further abatement of t with a

Figure 19.
T3L, non-dimensional
turbulence viscosity
profiles normal to the wall,
nt (m2/s)
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ratio 2:3 in the peak value, as already shown by Corsini et al. (2003) for a
standard EVM. On the basis of equation (27), the remarked improvement in the
time-scale limit is related to the sensitivity that the SPG residual projection basis
from the evolution of t, as indicated by ck and c1 in equation (19.3), that becomes
critical approaching a pure reactive-diffusive flow limit.

Conclusions
This paper investigated the predicting capabilities of a FEM stabilized formulation
developed for the purpose of solving advection-reaction-diffusion problems. Such a

Figure 20.
T3L k budget, normalized

turbulent diffusion
contribution normal to the

wall
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scheme, called SPG, addresses the use of a perturbation to the weight function
composed by two contributions on quadratic finite elements. The first one is a SUPG
like operator and is used to overcome wiggles due to advective or skew-symmetric
terms, whereas the second one is a symmetric operator aiming at precluding
oscillations due to reactive terms. The FEM formulation has been obtained by means of
1D nodal exactness, but has been tested in several more complex examples that violate
the super convergence conditions. In this respect, the SPG method demonstrates its
suitability in solving the typical equations of turbulence eddy viscosity models.
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Appendix 1
In order to clarify all the analytical aspects concerning the SPG stabilized formulation (equations
(13.1) and (13.2)), the authors include a complete list of all the adopted symbols and coefficients:
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a7 ¼ 24 2 2Pe þ r=10 2 4Peza2
þ

r

2
za2

þ
CSPG

280
zr2

Pe þ
CSPG

140
zr2

2
53CSPG

26; 880
rzr2

� 	

d8 ¼ 8 þ r4=5 þ 8Peza2
2

CSPG
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zr2

2
CSPG

840
rzr2

� 	

a6 ¼ 24 þ 2Pe þ r=10 2 4Peza2
2

r

2
za2

2
CSPG

280
zr2

Pe þ
CSPG
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zr2

2
53CSPG

26; 880
rzr2

� 	
ðA1Þ

a1 ¼ 28 2 4Pe þ r=5; b1 ¼ 28Pe þ 12 þ r;

a2 ¼ 1 þ Pe 2 r=10; b2 ¼ Pe 2 6 2 r=4;

a3 ¼ 28 þ 4Pe þ r=5; b3 ¼ 28Pe 2 12 2 r;

a4 ¼ 14 þ r4=5; b4 ¼ 14Pe;

a5 ¼ 1 2 Pe 2 r=10; b5 ¼ Pe þ 6 þ r=4;

e1 ¼ 2CSPGð1=35 þ r=420Þ;

e2 ¼ 2CSPGð53r=13; 440 2 Pe=140 2 1=70Þ;

e3 ¼ 2CSPGð1=35 þ r=420Þ;

e4 ¼ 2CSPGð53r=6; 720 2 1=35Þ;

e5 ¼ 2CSPGð53r=13; 440 þ Pe=140 2 1=70Þ;

CSPG ¼ ð212=32Þ0:35:

ðA2Þ

Appendix 2
In the following, the authors report on the final expression of the tuning functions introduced
with the SPG stabilized formulation. The notation is coherent with that used in equations (13.1),
(13.2), (A1) and (A2), and the fulfilment of the super-convergence feature (i.e. identity between
numerical solution and exact one for linear homogeneous 1D problems) permits to obtain the
following results:

za2
¼

4

5
r

ð450 þ 49rÞðaa2 2 aa1Þþ

þPeð241aa3 þ 241aa4 2 16aa1 2 16aa2Þ

" #

ð192r þ 768Pe 2Þðaa1 þ aa2 2 aa3 2 aa4Þþ

þr 2ð16aa1 þ 16aa2 þ 53aa3 þ 53aa4Þ þ 552Perðaa1 2 aa2Þ

" # ;

zr2
¼ 16:875

ð40r þ 160Pe 2Þðaa1 þ aa2 2 aa3 2 aa4Þþ

þr 2ð4aa1 þ 4aa2 þ aa3 þ aa4Þ þ 40rPeðaa1 2 aa2Þ

" #

ð192r þ 768Pe 2Þðaa1 þ aa2 2 aa3 2 aa4Þþ

þr 2ð16aa1 þ 16aa2 þ 53aa3 þ 53aa4Þ þ 552Perðaa1 2 aa2Þ

" # ;

aa1 ¼ ePeþ0:5
ffiffiffiffiffiffiffiffiffiffi
Pe 2þr

p

; aa2 ¼ e 0:5
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Pe 2þr

p

; aa3 ¼ e 0:5Peþ
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p
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¼ ½P1ða
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8e4 þ a2
6b3e1 2 b4d8a6e3 þ a6b3e4d8Þ þ P2ða7b3a6e1 þ e2d8a6b3

2 a6b1a7e3 þ e1a7b5d8 2 b1a7e5d8 2 b2d2
8e5 þ e2d2

8b5 2 b2d8a6e3Þ þ P3ð2b1a7e5d8

2 a6b1a7e3 þ e2d8a6b3 þ e1a7b5d8 þ a7b3a6e1 2 b2d2
8e5 þ e2d2

8b5 2 b2d8a6e3Þ

þ P4ð2b2d8a7e3 2 b1a7e4d8 þ e2d8a7b3 þ e2d8a6b1 þ e1a7b4d8 2 b2d8a6e1

þ e1a2
7b3 2 b1a2

7e3 þ e2d2
8b4 2 b2d2

8e4Þ�;

ðB2Þ

zr1
¼ 2½P1ð2b4d8a6a3 þ b5d8a6a1 2 a7b3a5d8 2 a6b1a5d8 þ b5d8a7a3 2 a2

6b1a3 2 b4d2
8a5

þ a2
6b3a1 þ b5d2

8a4 þ a6b3a4d8Þ þ P2ða1a7b5d8 2 b1a7a5d8 2 b2d8a6a3 2 a6b1a7a3

þ a2d8a6b3 þ a7b3a6a1 2 b2d2
8a5 þ a2d2

8b5Þ þ P3ða2d2
8b5 2 b2d2

8a5 þ a2d8a6b3

2 b2d8a6a3 þ a1a7b5d8 2 a6b1a7a3 2 b1a7a5d8 þ a7b3a6a1Þ þ P4ð2b2d8a7a3 þ a2d8a6b1

þ a2d8a7b3 2 b1a7a4d8 þ a1a7b4d8 2 b2d8a6a1 þ a1a2
7b3 2 b1a2

7a3 2 b2d2
8a4

þ a2d2
8b4Þ�=½P1ð2a7b3e5d8 2 a6b1e5d8 þ b5d8a6e1 þ b5d8a7e3 2 b4d2

8e5 2 a2
6b1e3

þ b5d2
8e4 þ a2

6b3e1 2 b4d8a6e3 þ a6b3e4d8Þ þ P2ða7b3a6e1 þ e2d8a6b3 2 a6b1a7e3

þ e1a7b5d8 2 b1a7e5d8 2 b2d2
8e5 þ e2d2

8b5 2 b2d8a6e3Þ þ P3ð2b1a7e5d8 2 a6b1a7e3

þ e2d8a6b3 þ e1a7b5d8 þ a7b3a6e1 2 b2d2
8e5 þ e2d2

8b5 2 b2d8a6e3Þ þ P4ð2b2d8a7e3

2 b1a7e4d8 þ e2d8a7b3 þ e2d8a6b1 þ e1a7b4d8 2 b2d8a6e1 þ e1a2
7b3 2 b1a2

7e3

þ e2d2
8b4 2 b2d2

8e4Þ�;

P1 ¼ e 2Peþ
ffiffiffiffiffiffiffiffiffiffi
Pe 2þr

p

; P2 ¼ ePeþ2
ffiffiffiffiffiffiffiffiffiffi
Pe 2þr

p

; P3 ¼ ePe; P4 ¼ e
ffiffiffiffiffiffiffiffiffiffi
Pe 2þr

p

:

Quadratic
Petrov-Galerkin

finite elements
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